Volunteer-Based System for research
on the Internet traffic

Tomasz Bujlow, Kartheepan Balachandran, Sara Ligaard Ngrgaard Hald,
Tahir Riaz, Jens Myrup Pedersen, Aalborg University

Abstract — To overcome the drawbacks of the existing
methods for traffic classification (by ports, Deep Packet
Inspection, statistical classification), a new system was
developed, in which the data are collected and classified
directly by clients installed on machines belonging to
volunteers. Our approach combines the information obtained
from the system sockets, the HTTP content types, and the
data transmitted through network interfaces. It allows to
group packets into flows and associate them with particular
applications or the types of service. This paper presents the
design and implementation of our system, the testing phase
and the obtained results. The performed threat assessment
highlights potential security issues and proposes solutions in
order to mitigate the risks. Furthermore, it proves that the
system is feasible in terms of uptime and resource usage,
assesses its performance and proposes future enhancements.
We released the system under The GNU General Public
License v3.0 and published it as a SourceForge project called
Volunteer-Based System for Research on the Internet.

Keywords — computer networks, data collecting,
performance monitoring, volunteer-based system.

I. INTRODUCTION

This journal paper is an extended and revised version of
[1], which was presented at the 19th Telecommunications
Forum TELFOR 2011.

Monitoring of the data flowing in the inter-network is
usually done to investigate the usage of network resources,
and to comply with the law, as in many countries the
Internet Service Providers (ISPs) are obligated to register
users’ activity. Monitoring can be also made for scientific
purposes, like creating realistic models of traffic and
applications for simulations, and to obtain accurate training
data for statistical traffic classifiers.

This paper focuses on the last approach. There are many
existing methods to assign the packets in the network to
a particular application, but none of them were capable
of providing high-quality per-application statistics when
working in high-speed networks. Classification by ports
or Deep Packet Inspection (DPI) can provide sufficient
results only for a limited number of applications, which
use fixed port numbers or contain characteristic patterns
in the payload. Therefore, we designed, built, and tested a
system, which collects the data directly from the machines
belonging to volunteers who contribute with the traffic
data. For the particular parts of the system, we described
the available and chosen solutions. Our objective was to
show that the system is feasible in terms of resource
usage, uptime, and providing valid results. The remainder
of this paper describes the previous work related to this

The authors work in the Section for Networking and Security,
Department of Electronic Systems, Aalborg University, DK-9220,
Aalborg East, Denmark. Emails: {tbu, kba, slh, tahir, jens}@es.aau.dk

research and then focuses on the design and the new
implementation of the volunteer-based system. Finally, it
shows the results of 3-months system tests and proposes
further enhancements.

II. RELATED WORK

Most methods for traffic classification use the concept of
a flow defined as a group of packets, which have the same
end IP addresses, ports, and use the same transport layer
protocol. Flows are bidirectional, so packets going from the
local machine to the remote server and from the remote
server to the local machine belong to the same flow. In
[2], the authors proposed to collect the data by Wireshark
while running one application per host at a time so that all
the captured packets will correspond to that application.
But this method requires each application, whose traffic
characteristics have to be captured, to be installed on the
host, which is run once for each application. This solution
is slow and not scalable. Secondly, all operating systems
usually have background processes such as DNS requests
and responses, system or program upgrades. They can
damage statistics of the application traffic.

A DPI solution using L7-filter and a statistical
classification solution are proposed in [3]. Using DPI
is much more convenient than the previous method, as
it can examine the data in any point in the network.
Unfortunately, existing DPI tools are not able to accurately
classify traffic belonging to some applications like Skype
(in this case L7-filter relies on statistical information
instead of the real traffic patterns, giving some false
positives and false negatives [4]). Obtaining the training
data for statistical classification based on statistical
classifiers will not give us high accuracy of the new
classifier. The idea of using DPI for classification of
the training data for Machine Learning Algorithms was
used in [5]. Moreover, the DPI classification is quite
slow and requires a lot of processing power [2], [6]. It
relies on inspecting the user data and, therefore, privacy
and confidentiality issues can appear [2]. Application
signatures for every application must be created outside
the system and kept up to date [2], which can be
problematic. Encryption techniques in many cases make
DPI impossible.

Using application ports [7], [8] is a very simple idea,
widely used by network administrators to limit the traffic
generated by worms and other unwanted applications. This
method is very fast and it can be applied to almost
all routers and layer-3 switches existing on the market.
Besides its universality, it is very efficient to classify
some protocols operating on fixed port numbers. Using it,
however, gives very bad results in detection of protocols

using dynamic port numbers, like P2P or Skype [2],
[6], [9]. The second drawback is not less severe: many
applications try to use well-known port numbers to be
treated in the network with a priority.

III. VOLUNTEER-BASED SYSTEM

We developed a system, which collects flows of
Internet data traffic together with the information about
the application associated with each flow. The prototype
version was called Volunteer-based Distributed Traffic
Data Collection System and its architecture was described
and analyzed in [10] and [11]. The design and the
implementation of the prototype had numerous weaknesses
and stability issues. Therefore, a new implementation of
the system has been made, called Volunteer-Based System
(VBS). The new, reimplemented version of VBS was
released under The GNU General Public License v3.0
and published as a SourceForge project. The website [12]
contains a broad description of the project illustrated with
screenshots, a roadmap, binary packages, source code in
the Git repository, comprehensive documentation of the
source code, and a system for bug tracking and feature
requests.

Both the prototype and VBS were developed in Java,
using Eclipse environment, and that resulted in a cross-
platform solution. Currently, only Microsoft Windows (XP
and newer) and Linux are supported because of third-party
libraries and helper applications used in the development.
The system consists of clients installed on volunteers’
computers and of a server responsible for storing the
collected data.

The task of the client is to register the information
about each data packet passing the Network Interface Card
(NIC). Captured packets are categorized into flows, with
the exception of traffic to and from the local network
(file transfers between local peers are filtered out). The
following attributes of the flow are captured: start and
end times of the flow, number of packets contained by
the flow, local and remote IP addresses, local and remote
ports, transport layer protocol, name of the application,
and name of the client associated with the flow. The client
also collects information about all the packets associated
with each flow: direction, size, TCP flags, and relative
timestamp to the previous packet in the flow. One transport-
layer flow can contain multiple application-layer streams
of HTTP data, and each of them can carry different
kinds of content, such as audio or video. For that reason,
packets belonging to flows which contain HTTP content
require additional information to be collected. Therefore,
in this case, we additionally store the information about
the content type for each packet of the flow. In fact, the
information about the content type is present only in the
first packet of the response made to an HTTP request. It
means that for each HTTP request we have one packet
containing the information about the content type, which
allows us to logically split all the application-layer HTTP
streams. The collected data are periodically transmitted to
the server, which stores all the data for further analysis. The
client consists of 4 modules running as separate threads:
packet capturer, socket monitor, flow generator, and data
transmitter.

Both the VBS client and the VBS server are designed to
run in the background and to start automatically together
with the operating system (as a Windows service or a Linux
daemon). The prototype uses the free community version
of Tanuki Java Service Wrapper [13], which provides
support only for 32-bit JVMs, and which requires special
packaging of the Java application and placement of the
libraries. To avoid these limitations, it has been replaced
with YAJSW [14], an open-source project that provides
support for both 32-bit and 64-bit versions of Windows
and Linux.

We implemented a fully automatic update system for
VBS clients. To simplify the update process, we introduced
three different version numbers in our software; the first
one is associated with the client, the second one with the
server, and the third one with the structure of the SQLite
database used for exchanging the information between the
client and the server. The update is stored on the server.
While registering on the server, the client asks if any update
is available, and downloads it if possible. The update is
automatically installed by a script executed by YAJSW
during the next restart of the VBS client.

A. Packet Capturer

External Java libraries for collecting packets from
the network rely on the already installed Winpcap (on
Windows) or libpcap (on Linux), which makes the
operating system dependency issue transparent to the
application. The Jpcap [15] library used in the prototype is
not suitable for processing packets from high-speed links,
because transfers with rates higher than 3 MB/s cause Java
Virtual Machine (JVM) to crash. Moreover, the loopPacket
and the processPacket functions are broken causing random
JVM crashes, so the only possibility is to process the
packets one by one using getPacket (this bug is fixed in
a new project called Jpcapng [16] evolved from Jpcap).
Jpcap has not been developed since 2007 and Jpcapng
since 2010, so there is no chance to get the bugs corrected.
Therefore, we chose jNetPcap [17] as it contains even more
useful features than Jpcap offered, such as detecting and
stripping different kinds of headers (data-link, IP, TCP,
UDP, HTTP) in the processed packets. It allows the client
to capture packets on all the interfaces, not only on the
Ethernet ones like the prototype, where the client needed
to know the number of stripped bytes. jNetPcap is also able
to filter out the local subnet traffic on the Pcap level by
compiling dynamically Pcap filters, which saves system
memory and CPU power. Contrary to processing each
packet separately by the prototype of VBS, we decided
to use the native function of Winpcap or libpcap called
loopPacket. It allowed to lower the usage of the resources
consumed by the VBS client. It is worth mentioning that
the Winpcap library tends to crash when the computer is
placed into the standby mode, sleep mode, or hibernation.
Therefore, the packet capturer needs to be continuously
monitored and restarted in the case of a crash. A need
to restart the capturer also appears when new interfaces
are detected in the system, for example, when a network
cable is connected, or the switch of a wireless card is
enabled. If an IP address on an interface is changed, the
packet capturer needs to be restarted as well to prevent

0.70
0.65
0.60
0.55
4 oas
=
@ 0,40
£ 0.35
£ 0.30
g o025
C o0.20
0.15
0.10
0.05
0.00

00 05 10 15 20 25 30 35 40 45 50 55 60 65 7.0

75 80 85 9.0 &5 100 10.5 11.0 11.5 12.0 125 13.0 135 14.0 14,5 15.0

CPU usage by particular VBS clients [%]

—1—2 4 5 6 7 8 —9 —10 —11 —12

13 —14 —15 —16 —17 —18 19 20 21 22

23 — 24 —25 — 26 —27 —28

Fig. 1. The CPU usage by VBS client on test computers

the confusion with recognizing the local and remote IP
addresses.

B. Socket Monitor

The socket monitor calls the external socket monitoring
tool every second to ensure that even very short flows
are registered. In the prototype, the built-in Windows or
Linux Netstat was used, but it takes up to 20 seconds for
Windows Netstat to display the output on some machines.
We tried to solve this issue by using CurrPorts [18] instead
of Netstat on Windows. Unfortunately, the only way to
export the socket information was to write it to a file on the
hard disk. It resulted in poor performance due to excessive
disk reads and writes when executing CurrPorts each
second. Finally, we chose Tcpviewcon, a console version
of TCPView [19]. Tcpviewcon displays the information
about the sockets in the console in a Netstat-like view,
which allows us to process this information in the same
manner as using Netstat. Using the external tools brings
some licensing issues. These third-party applications must
not be redistributed along with the VBS, but they need to
be downloaded by the installer on the users’ computers
after accepting their license agreements.

VBS monitors both TCP and UDP sockets, contrary to
the prototype, which was able to handle only TCP sockets.
TCP sockets include the information about both end-points
(local and remote) because a connection is established,
while UDP sockets only provide the information about the
local host. Since only one application can listen on a given
UDP port at a time, the information about the local IP
address and the local port are fully sufficient to obtain the
application name for the given flow. Nevertheless, it is not
possible to use the information about the UDP socket to
terminate the flow, because many flows to different remote
points can coexist using one UDP socket. Therefore, UDP
flows are always closed based on timeout. TCP sockets are
created on a one-per-connection basis, so it is possible to
precisely assign a socket to a flow and close the flow when
the matching socket is closed.

C. Flow Generator

Collected packets are grouped into flows. If the
application name can be received from the matching
socket, it is assigned to the flow. When the flow is closed
(the matching socket is closed or the flow is timed out in
case the flow is not mapped to any socket), it is stored in

the memory buffer. The prototype treated the flow and the
packet data as raw byte arrays and stored them as binary
files. However, it was impossible to detect the corruption
of files or to look into the file to see what went wrong
without binary file parsers. Therefore, we decided to use
SQLite [20], which uses the proper data types (like integer,
double, string) for all the captured information.

D. Data Transmitter

Before transmitting the data, the client authenticates
itself to the server using a hardcoded plain-text password
and obtains an identifier. The communication between
the clients and the server uses raw sockets. The node
authentication and the data transmission require separate
connections between the clients and the server. When a
sufficient number of flows are stored in the local database
(the database exceeds 700kB), the SQLite database file is
transmitted and stored on the VBS server. The transmitted
database file also includes the client identifier and the
information about the operating system installed on the
client machine.

E. Implementation of the Server

The prototype server was based on threads. It received
binary files from the clients and stored them in a separate
directory for each client. The VBS server is also based on
threads, however, it stores the collected data differently.
The first thread authenticates the clients and assigns
identifiers to them. The second thread receives files from
clients and stores them in a common folder, which is
periodically checked by the third thread. The files are
checked for corruption and the proper SQLite database
format, then they are extracted into the database. A
synchronization method is used to avoid a situation where
the third thread tries to process a file, which was not
transferred completely — the extension of the file is changed
after the file transfer is successful. The server uses the
community edition of MySQL as the database, as it is
quite fast and reliable for storing significant amounts of
data.

IV. TESTING PHASE

The system was implemented and tested over a period of
3 months, to test its feasibility and usefulness in collecting
valid data. The server was installed at Aalborg University
on a PC equipped with an Intel Core i3 550 / 3.2 GHz

TABLE 1: STATISTICS OF THE OPERATIONS OF THE VBS CLIENTS

client average CPU | captured traffic belonging | number of | UDP flows [%] short flows below | flows without the
id usage [%] traffic [GB] to VBS [%] captured flows 20 packets [%] application name [%]
1 24 43.64 4.46 843552 32.00 85.57 61.28
2 1.1 0.04 2.04 149 0.00 65.77 23.49
4 0.5 248.95 4.10 3587227 51.42 86.12 3.05
5 1.0 29.09 475 1184464 46.82 92.56 1.58
6 0.8 0.08 4.90 1009 0.00 69.67 9.91
7 0.9 0.17 6.36 6943 8.44 76.51 13.38
8 0.9 0.34 10.39 16671 1.83 80.64 40.35
9 0.7 0.14 5.30 3084 0.29 71.07 18.00
10 2.2 0.02 5.31 774 0.52 73.00 19.12
11 0.7 0.19 6.82 4552 1.38 65.66 8.37
12 0.8 0.43 9.07 12000 0.77 80.19 27.79
13 0.8 0.11 6.81 4324 0.48 75.13 7.61
14 0.9 0.24 5.31 6186 1.00 69.95 9.80
15 2.6 0.04 11.51 5724 0.05 84.03 37.61
16 2.6 0.03 9.08 2227 0.27 75.12 23.53
17 2.3 0.08 9.39 5736 0.14 72.70 27.63
18 0.6 0.50 6.24 16158 0.03 67.81 13.67
19 2.6 0.44 9.04 28575 0.08 74.80 29.18
20 0.8 0.16 6.51 4905 0.20 75.37 14.82
21 32 0.39 8.01 22572 0.00 69.76 27.16
22 2.8 0.39 7.41 24389 0.00 72.58 31.77
23 0.4 0.19 4.95 5664 0.04 67.07 8.33
24 3.7 0.10 5.05 2692 0.00 73.59 33.51
25 35 0.06 3.20 1352 0.00 71.52 38.76
26 2.3 0.02 3.23 1056 0.00 69.22 12.69
27 2.7 0.04 5.74 1414 0.00 66.62 19.87
28 2.7 0.02 6.94 419 0.00 74.41 63.96

processor, 4 GB of DDR3 SDRAM memory, and 70 GB
hard disk and using Ubuntu 11.04 as OS. The clients
were installed on 4 computers placed in private houses in
Denmark and in Poland as well as on 23 machines installed
in computer classrooms in Gimnazjum nr 3 z Oddziatami
Integracyjnymi i Dwujezycznymi imienia Karola Wojtyty
w Mystowicach, a high school in Poland. The computers
used for the test were equipped with various hardware
and operating systems. The objective was to prove that
the system has high uptime, collects data from remotely
located clients, and does not consume too much resources.
The CPU usage by the VBS fluctuates with the average
of around 1.7 % depending on the current rate of the
traffic in the network. The CPU usage on the computers
participating in our tests is shown in Figure 1. To avoid
the complexity of illustrating the CPU usage over the long
time of the experiment, we illustrated the occurrence rate
of the CPU consumption by each client. As it is shown, the
CPU consumption in most cases amounts to 5% or less,
while the consumption of 10 % or more is extremely rare.
During the experiment, no JVM errors about exceeding
the default allocated memory size occurred, so we assume
that VBS is free of memory leaks. The average memory
usage on all the tested machines was below 5% of the
installed system memory. The minimum required amount
of system memory is 64 MB because of the requirements of
the Java service wrapper YAJSW. Disk space usage varied
depending on the scheduling.

The test results were obtained during around 3 months
and in this time the clients analyzed 325.88 GB of Internet
traffic data (accumulated data from all clients). On the
server side, 22.8 GB of statistical data were collected,
consisting of 0.9GB of flows data (5,799,207 records),
and 21.9GB of packets data (446,987,507 records).

The communication between the VBS client and the
server passes the network adapter as an ordinary remote
connection, so it also appears in the database and is a
subject to be included in the classification. During the
test period, 4.21 % of the collected data correspond to
the communication between the VBS client and the VBS
server. Short flows, which contain less than 20 packets,
represent 87 % of total number of flows. Around 12 %
of flows were collected without the associated application
name. TCP flows without the application name contain
13 packets in average comparing to the flows with the
application name containing 74 packets in average. It
means that the matching sockets for short flows were
not registered by the socket monitor due to very short
opening time. This rule does not apply to UDP flows
because all the flows created by one application use the
same UDP socket in the system. It means that either all
or none flows associated with the socket have assigned an
application name, regardless of the length of the particular
flow. Detailed statistics on per-client basis are shown in
Table 1.

An example of the stored flows data is shown in Table 2.
The IP addresses were hidden for privacy reasons, the start
and the end times of the flow (stored as Unix timestamps)
were cut due to their length. This table also depicts a
very interesting behavior of Skype — while the main voice
stream is transmitted directly between the peers using UDP,
there are plenty of TCP and UDP conversations with many
different points (originally it was found to be around 50).
The reason for this could be that the Skype user directory
is decentralized and distributed among the clients.

Together with each flow, the information about every
packet belonging to this flow is registered. One TCP
conversation is presented in Table 3, some non-relevant

TABLE 2: EXAMPLE OF THE STORED FLOWS DATA, THE TIMESTAMPS ARE STRIPPED DUE TO THEIR LENGTH

flow id | client start end no. of local remote local remote protocol socket application
id time time packets 1P 1P port port name name
1 1 13... 13... 40 192.x.x.x | 213.x.x.x | 1133 110 TCP thebat.exe
6 1 13... 13... 10 192.x.x.x | 74.x.X.X 1151 80 TCP opera.exe
7 1 13... 13... 10 192.x.x.x | 9l.x.x.x 1138 80 TCP opera.exe
46012 1 13... 13... 20 192.x.x.x | 85.x.x.x 23399 45527 TCP Skype.exe
46013 1 13... 13... 20 192.x.x.x | 78.x.X.X 23399 3598 TCP Skype.exe
46014 1 13... 13... 11 192.x.x.x | 41l.xxx 23399 10050 TCP Skype.exe
46015 1 13... 13... 15 192.x.x.x | 4l.xxXx 23399 10051 TCP Skype.exe
46016 1 13... 13... 207457 192.x.x.x | 62.x.X.X 23399 14471 UDP Skype.exe
46021 1 13... 13... 3 192.x.x.x | 183.x.x.x | 23399 33033 UDP Skype.exe
TABLE 3: CHOSEN PACKETS FROM ONE STORED TCP COMMUNICATION

flow direction | packet SYN ACK PSH FIN RST CWR | ECN URG relative content
id size [B] timestamp [us] type
18 OuT 48 1 0 0 0 0 0 0 0 0 1
18 IN 48 1 1 0 0 0 0 0 0 134160 1
18 OuT 40 0 1 0 0 0 0 0 0 200 1
18 OuT 105 0 1 1 0 0 0 0 0 20262 1
18 IN 77 0 1 1 0 0 0 0 0 79654 1
18 OuT 43 0 1 1 0 0 0 0 0 1651 1
18 IN 58 0 1 1 0 0 0 0 0 66950 1
18 ouT 40 0 1 0 0 0 0 0 0 175472 1
18 OuUT 40 0 1 0 1 0 0 0 0 1031011 1
18 IN 40 0 1 0 0 0 0 0 0 69279 1
18 IN 40 0 1 0 1 0 0 0 0 250 1
18 OuT 40 0 1 0 0 0 0 0 0 25 1

packets are omitted to save space. This example shows

that all the parameters are correctly collected. Thanks to S|{5(10]15|20]25

such a detailed flow description, it can be used as a base 4l alsl12116l20

for creating numerous different statistics. These precise .

statistics can be used as an input to Machine Learning 2 3|13|6|9 12|15

Algorithms (MLAs). We tried this approach in [21] and %

. 2 2121468110

we classified traffic belonging to 7 different applications

with accuracy of over 99 %. In [22], we used VBS to 1123|4135

distinguish different kinds of browser traffic, such as file 1 2 3 4 5

download, web browsing, audio and video. The statistics

obtained from the particular groups of the traffic were Probability

provided as an input to MLAs. Moreover, the presence of
the packet size and the relative timestamp enables us to re-
create characteristics of this traffic and, therefore, also the
behavior of the application associated with the flow. The
relative timestamp shows how much time passed from the
previous packet in the flow.

V. THREAT ASSESSMENT

The Volunteer-Based System, as other distributed
systems, is prone to various types of security attacks. For
that reason, we made deep analysis of potential risks, and
we suggested the solutions for mitigating or avoiding them.
We started the assessment from finding all interfaces which
can be used to interact with the system. These interfaces
result from both the architecture of VBS and the use cases.
Then, we composed the list of possible threats for each
interface. For each threat, we assessed its probability and
severity using the scale from 1 to 5, where 1 means the
lowest probability or severity, and 5 means the highest.
Table 4 shows the disclosed threats and the assigned values.

The decision about which threats need to be handled is
based on the impact matrix shown in Figure 2 [23]. If the
intersection of the probability and the severity of the threat
lies in the cells marked with the yellow color, the threat

Fig. 2. The impact matrix [23]

should be handled. However, if it lies in the cells marked
with the blue color, the threat does not need be handled.
Threats belonging to the cells marked with the white color
can be handled, but it is not required. We can see that only
one threat requires handling in our system — the server
needs to be protected from an SQL injection attack. There
are several other issues which we can mitigate or avoid.
The physical access is protected by placing the server in a
safe room with attested locks, and a firewall can be used to
protect the system from malicious connections. The threats
to the system can also be further reduced by stripping the
data of IP addresses or by using encryption.

VI. CONCLUSION

The paper presents a novel volunteer-based system for
collecting network traffic data, which was implemented
and tested on 27 volunteers during around 3 months. With
relatively long testing, the system has shown to be feasible
in terms of resource usage and uptime. The obtained
results proved that the system is capable of providing

TABLE 4: THE SECURITY LEAKS IN VBS WITH ASSIGNED PROBABILITY AND SEVERITY

[Interface / threat | Probability (1-5) | Severity (1-5) | Handle |
The user interface
A user can delete the local data storage 3 1 No
A user can pollute data in his local data storage 1 2 No
A user can destroy the VBS system 3 1 No
A user can modify the local data storage by adding SQL commands (SQL injection) 1 5 Maybe
An attacker can hijack user’s computer and redirect the data to another machine 1 1 No
The server interface
An attacker can get physical access to the server [1 [5 | Maybe
The network interface
An attacker can inject polluted data to the server 3 4 Maybe
An attacker can inject data containing SQL commands to the server (SQL injection) 4 5 Yes
An attacker can perform a Denial of Service attack on the server 3 2 Maybe
An attacker can hack the server and modify or delete the database 2 5 Maybe
An attacker can hack the server and change the file used to upgrade clients, which can | 1 5 Maybe
result in loosing all VBS clients and transferring them into bots in attacker’s botnet
The communication between the clients and the server
An attacker can sniff the communication between the client and the server 1 3 No
An attacker can pollute the data being sent by the client to the server 1 2 No
An attacker can modify the data being sent from the client to the server by adding SQL | 1 5 Maybe
commands (SQL injection)

valid detailed information about the characteristics of
the network traffic. Therefore, we can use the system
to create the profiles of traffic generated by different
applications. VBS is a field for constant improvements.
As we assessed in the previous section, sufficient security
needs to be implemented in the system. If it is possible,
we should avoid using external tools (Netstat, TCPView),
but extract the information about open sockets directly
from the system API. We need to consider developing an
intelligent transfer protocol, which will allow to negotiate
link parameters and to schedule transfers in order to
effectively use the capacity of the link. A user-friendly
installer will be the next step to make the system easier to
use by non-qualified users.

VBS requires a valid IPv4 address to listen on a
network interface, but IPv6 is also planned to be supported.
Another issue arises when an encapsulation, data tunneling
or network file systems (like SAMBA, NFS) are used.
Then, only the most outer IP and TCP/UDP headers are
inspected. The next issue is the lack of the application
name for short flows. Volunteers’ privacy also must be
protected in a better way, for example by avoiding to
store IP addresses in a clear text. Another concern, due
to privacy issues, is how to find a large enough group
of participating volunteers to be able to receive data for
all the relevant applications. This issue is not resolved so
far, but we believe that it will be easier to convince the
users to install the software if it can provide some useful
information to the user, like statistics about the amount of
traffic belonging to the particular groups of applications.

Finally, the collected data can be used to create an
emulator of different applications, different groups of
applications, the Internet traffic under certain conditions,
or at selected points of the time.

REFERENCES

[1] Tomasz Bujlow, Kartheepan Balachandran, Tahir Riaz, and
Jens Myrup Pedersen. Volunteer-Based System for classification

of traffic in computer networks. In Proceedings of the
19th Telecommunications ~ Forum TELFOR 2011, pages
210-213. IEEE, Belgrade, Serbia, November 2011. DOI:

10.1109/TELFOR.2011.6143528.

[2]

[3]

(4]
[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Jun Li, Shunyi Zhang, Yanqing Lu, and Junrong Yan. Real-time
P2P traffic identification. In Proceedings of the IEEE Global
Telecommunications Conference (IEEE GLOBECOM 2008), pages
1-5. IEEE, New Orleans, Louisiana, USA, December 2008. DOI:
10.1109/GLOCOM.2008.ECPA475.

Riyad Alshammari and A. Nur Zincir-Heywood. Unveiling Skype
encrypted tunnels using GP. In Proceedings of the 2010 IEEE
Congress on Evolutionary Computation (CEC), pages 1-8. IEEE,
Barcelona, Spain, July 2010. DOI: 10.1109/CEC.2010.5586288.
L7-filter Supported Protocols, 2012. [Online]. Available: http:
/N7-filter.sourceforge.net/protocols.

Wei Li and Andrew W. Moore. A Machine Learning Approach for
Efficient Traffic Classification. In Proceedings of the Fifteenth IEEE
International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunications Systems (MASCOTS’07),

pages 310-317. IEEE, Istanbul, Turkey, October 2007. DOI:
10.1109/MASCOTS.2007.2.

Ying Zhang, Hongbo Wang, and Shiduan Cheng. A Method
for Real-Time Peer-to-Peer Traffic Classification Based
on C4.5. In Proceedings of the 12th IEEE International
Conference on Communication Technology (ICCT), pages
1192-1195. IEEE, Nanjing, China, November 2010. DOI:
10.1109/ICCT.2010.5689126.

Riyad Alshammari and A. Nur Zincir-Heywood. Machine

Learning based encrypted traffic classification: identifying SSH and
Skype. In Proceedings of the IEEE Symposium on Computational
Intelligence for Security and Defense Applications (CISDA 2009),
pages 1-8. IEEE, Ottawa, Ontario, Canada, July 2009. DOI:
10.1109/CISDA.2009.5356534.

Sven Ubik and Petr Zejdl. Evaluating application-layer classification
using a Machine Learning technique over different high speed
networks. In Proceedings of the Fifth International Conference on
Systems and Networks Communications (ICSNC), pages 387-391.
IEEE, Nice, France, August 2010. DOI: 10.1109/ICSNC.2010.66.
Jing Cai, Zhibin Zhang, and Xinbo Song. An analysis of
UDP traffic classification. In Proceedings of the 12th IEEE
International Conference on Communication Technology (ICCT),
pages 116-119. IEEE, Nanjing, China, November 2010. DOI:
10.1109/1CCT.2010.5689203.

Kartheepan Balachandran, Jacob Honoré Broberg, Kasper
Revsbech, and Jens Myrup Pedersen. Volunteer-Based Distributed
Traffic Data Collection System. In Proceedings of the 12th
International Conference on Advanced Communication Technology
(ICACT 2010), volume 2, pages 1147-1152. IEEE, Phoenix Park,
PyeongChang, Korea, February 2010.

Kartheepan Balachandran and Jacob Honoré Broberg. Volunteer-
Based Distributed Traffic Data Collection System. Master’s thesis,
Aalborg University, Department of Electronic Systems, Denmark,
June 2010.

Volunteer-Based System for Research on the Internet, 2012.
[Online]. Available: http://vbsi.sourceforge.net/.

Java Service Wrapper — Tanuki Software, 2011. [Online]. Available:
http://wrapper.tanukisoftware.com/doc/english/download.jsp.

http://dx.doi.org/10.1109/TELFOR.2011.6143528
http://dx.doi.org/10.1109/GLOCOM.2008.ECP.475
http://dx.doi.org/10.1109/CEC.2010.5586288
http://l7-filter.sourceforge.net/protocols
http://l7-filter.sourceforge.net/protocols
http://dx.doi.org/10.1109/MASCOTS.2007.2
http://dx.doi.org/10.1109/ICCT.2010.5689126
http://dx.doi.org/10.1109/CISDA.2009.5356534
http://dx.doi.org/10.1109/ICSNC.2010.66
http://dx.doi.org/10.1109/ICCT.2010.5689203
http://vbsi.sourceforge.net/
http://wrapper.tanukisoftware.com/doc/english/download.jsp

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

YAJSW — Yet Another Java Service Wrapper, 2011. [Online].
Available: http://yajsw.sourceforge.net/.

Jpcap — a Java library for capturing and sending network packets,
2007. [Online]. Available: http://netresearch.ics.uci.edu/kfujii/
Jpcap/doc/index.html.

Jpcapng — fork of Jpcap, aka Jpcap 0.8, 2010. [Online]. Available:
http://sourceforge.net/projects/jpcapng/.

jNetPcap OpenSource | Protocol Analysis SDK, 2011. [Online].
Auvailable: http://jnetpcap.com/.

CurrPorts, Monitoring opened TCP/IP network ports / connections,
2011. [Online]. Available: http://www.nirsoft.net/utils/cports.html.
TCPView for Windows, 2011. [Online]. Available: http://technet.
microsoft.com/en-us/sysinternals/bb897437.

SQLite, Self-contained, serverless, zero-configuration, transactional
SQL database engine, 2011. [Online]. Available: http://www.sqlite.
org/.

Tomasz Bujlow, Tahir Riaz, and Jens Myrup Pedersen. A
method for classification of network traffic based on CS5.0
Machine Learning Algorithm. In Proceedings of ICNC’12:
2012 International Conference on Computing, Networking and
Communications (ICNC): Workshop on Computing, Networking
and Communications, pages 244-248. IEEE, Maui, Hawaii, USA,
February 2012. DOI: 10.1109/ICCNC.2012.6167418.

Tomasz Bujlow, Tahir Riaz, and Jens Myrup Pedersen.
Classification of HTTP traffic based on C5.0 Machine Learning
Algorithm. In Proceedings of the Fourth IEEE International
Workshop on Performance Evaluation of Communications
in Distributed Systems and Web-based Service Architectures
(PEDISWESA 2012), pages 882-887. IEEE, Cappadocia, Turkey,
July 2012. DOI: 10.1109/ISCC.2012.6249413.

Office of Government Commerce. An Introduction to PRINCE2:
Managing and Directing Successful Projects. The Stationery Office
(TSO), January 2009.

http://yajsw.sourceforge.net/
http://netresearch.ics.uci.edu/kfujii/Jpcap/doc/index.html
http://netresearch.ics.uci.edu/kfujii/Jpcap/doc/index.html
http://sourceforge.net/projects/jpcapng/
http://jnetpcap.com/
http://www.nirsoft.net/utils/cports.html
http://technet.microsoft.com/en-us/sysinternals/bb897437
http://technet.microsoft.com/en-us/sysinternals/bb897437
http://www.sqlite.org/
http://www.sqlite.org/
http://dx.doi.org/10.1109/ICCNC.2012.6167418
http://dx.doi.org/10.1109/ISCC.2012.6249413

	I Introduction
	II Related Work
	III Volunteer-Based System
	III-A Packet Capturer
	III-B Socket Monitor
	III-C Flow Generator
	III-D Data Transmitter
	III-E Implementation of the Server

	IV Testing Phase
	V Threat Assessment
	VI Conclusion
	References

